Berkeley Notes
  • Introduction
  • EE120
    • Introduction to Signals and Systems
    • The Fourier Series
    • The Fourier Transform
    • Generalized transforms
    • Linear Time-Invariant Systems
    • Feedback Control
    • Sampling
    • Appendix
  • EE123
    • The DFT
    • Spectral Analysis
    • Sampling
    • Filtering
  • EECS126
    • Introduction to Probability
    • Random Variables and their Distributions
    • Concentration
    • Information Theory
    • Random Processes
    • Random Graphs
    • Statistical Inference
    • Estimation
  • EECS127
    • Linear Algebra
    • Fundamentals of Optimization
    • Linear Algebraic Optimization
    • Convex Optimization
    • Duality
  • EE128
    • Introduction to Control
    • Modeling Systems
    • System Performance
    • Design Tools
    • Cascade Compensation
    • State-Space Control
    • Digital Control Systems
    • Cayley-Hamilton
  • EECS225A
    • Hilbert Space Theory
    • Linear Estimation
    • Discrete Time Random Processes
    • Filtering
  • EE222
    • Real Analysis
    • Differential Geometry
    • Nonlinear System Dynamics
    • Stability of Nonlinear Systems
    • Nonlinear Feedback Control
Powered by GitBook
On this page

Was this helpful?

  1. EE120

Appendix

PreviousSamplingNextEE123

Last updated 3 years ago

Was this helpful?

Theory of Distributions

The Theory of Distributions is the mathematical framework which underlies the generalized Fourier Transforms.

Definition 41

Given a test function xxx, a distribution TTT operates on xxx to produce a number <T,x><T,x><T,x>.

Definition 42

The distrbution induced by a function ggg is defined as

<Tg,x>=∫−∞∞g(t)∗x(t)dt<T_g, x> = \int_{-\infty}^{\infty}{g(t)^*x(t)dt}<Tg​,x>=∫−∞∞​g(t)∗x(t)dt

Notice two things:

  • <Tg,x><T_g, x><Tg​,x> is linear

  • <αTg,x>=α∗<Tg,x><\alpha T_g, x> = \alpha^*<T_g, x><αTg​,x>=α∗<Tg​,x>

With these definitions, we can now define the Dirac delta in terms of distrubions. Let ggg be any function such that

∫∞∞g(t)dt=1\int_{\infty}^{\infty}{g(t)dt} = 1∫∞∞​g(t)dt=1

Define gϵg_\epsilongϵ​ to be

gϵ=1ϵg(tϵ)g_\epsilon = \frac{1}{\epsilon}g(\frac{t}{\epsilon})gϵ​=ϵ1​g(ϵt​)

Now we can defined δ(t)=lim⁡ϵ→0Tgϵ\delta(t) = \lim_{\epsilon \rightarrow 0}{T_{g_\epsilon}}δ(t)=limϵ→0​Tgϵ​​

which is the property of the Dirac Delta we want. Now we can define the generalized Fourier Transform in terms of distributions.

Definition 43

<δ,x>=∫−∞∞δ(t)x(t)dt=x(0)<\delta, x> = \int_{-\infty}^{\infty}{\delta(t)x(t)dt} = x(0)<δ,x>=∫−∞∞​δ(t)x(t)dt=x(0)

The generalized Continuous Time Fourier Transform of a distrubtion TTT is

<FT,X>=2π<T,x><FT, X> = 2\pi<T, x><FT,X>=2π<T,x>

for test function xxx whose Fourier Transform is XXX