Berkeley Notes
Home
Resources
Search…
Introduction
EE120
Introduction to Signals and Systems
The Fourier Series
The Fourier Transform
Generalized transforms
Linear Time-Invariant Systems
Feedback Control
Sampling
Appendix
EE123
EECS126
EECS127
EE128
EECS225A
EE222
Powered By
GitBook
Appendix
Theory of Distributions
The Theory of Distributions is the mathematical framework which underlies the generalized Fourier Transforms.
Definition 41
Given a test function
x
x
x
, a distribution
T
T
T
operates on
x
x
x
to produce a number
<
T
,
x
>
<T,x>
<
T
,
x
>
.
Definition 42
The distrbution induced by a function
g
g
g
is defined as
<
T
g
,
x
>
=
∫
−
∞
∞
g
(
t
)
∗
x
(
t
)
d
t
<T_g, x> = \int_{-\infty}^{\infty}{g(t)^*x(t)dt}
<
T
g
,
x
>=
∫
−
∞
∞
g
(
t
)
∗
x
(
t
)
d
t
Notice two things:
<
T
g
,
x
>
<T_g, x>
<
T
g
,
x
>
is linear
<
α
T
g
,
x
>
=
α
∗
<
T
g
,
x
>
<\alpha T_g, x> = \alpha^*<T_g, x>
<
α
T
g
,
x
>=
α
∗
<
T
g
,
x
>
With these definitions, we can now define the Dirac delta in terms of distrubions. Let
g
g
g
be any function such that
∫
∞
∞
g
(
t
)
d
t
=
1
\int_{\infty}^{\infty}{g(t)dt} = 1
∫
∞
∞
g
(
t
)
d
t
=
1
Define
g
ϵ
g_\epsilon
g
ϵ
to be
g
ϵ
=
1
ϵ
g
(
t
ϵ
)
g_\epsilon = \frac{1}{\epsilon}g(\frac{t}{\epsilon})
g
ϵ
=
ϵ
1
g
(
ϵ
t
)
Now we can defined
δ
(
t
)
=
lim
ϵ
→
0
T
g
ϵ
\delta(t) = \lim_{\epsilon \rightarrow 0}{T_{g_\epsilon}}
δ
(
t
)
=
lim
ϵ
→
0
T
g
ϵ
<
δ
,
x
>
=
∫
−
∞
∞
δ
(
t
)
x
(
t
)
d
t
=
x
(
0
)
<\delta, x> = \int_{-\infty}^{\infty}{\delta(t)x(t)dt} = x(0)
<
δ
,
x
>=
∫
−
∞
∞
δ
(
t
)
x
(
t
)
d
t
=
x
(
0
)
which is the property of the Dirac Delta we want. Now we can define the generalized Fourier Transform in terms of distributions.
Definition 43
The generalized Continuous Time Fourier Transform of a distrubtion
T
T
T
is
<
F
T
,
X
>
=
2
π
<
T
,
x
>
<FT, X> = 2\pi<T, x>
<
FT
,
X
>=
2
π
<
T
,
x
>
for test function
x
x
x
whose Fourier Transform is
X
X
X
Previous
Sampling
Next
EE123
Last modified
9mo ago
Copy link